Daun berguguran

Peta Situs Atau Site Map Di Sidebar Blog

Senin, 25 April 2011

A. Cara Kondensasi
Cara kondensasi termasuk cara kimia.


kondensasi
Prinsip : Partikel Molekular --------------> Partikel Koloid
Reaksi kimia untuk menghasilkan koloid meliputi :
1. Reaksi Redoks
2 H2S(g) + SO2(aq) ® 3 S(s) + 2 H2O(l)

2. Reaksi Hidrolisis
FeCl3(aq) + 3 H2O(l) ® Fe(OH)3(s) + 3 HCl(aq)

3. Reaksi Substitusi
2 H3AsO3(aq) + 3 H2S(g) ® As2S3(s) + 6 H2O(l)

4. Reaksi Penggaraman
Beberapa sol garam yang sukar larut seperti AgCl, AgBr, PbI2, BaSO4 dapat membentuk partikel koloid dengan pereaksi yang encer.
AgNO3(aq) (encer) + NaCl(aq) (encer) ® AgCl(s) + NaNO3(aq) (encer)

B. Cara Dispersi
Prinsip : Partikel Besar ----------------> Partikel Koloid
Cara dispersi dapat dilakukan dengan cara mekanik atau cara kimia:
1. Cara Mekanik
Cara ini dilakukan dari gumpalan partikel yang besar kemudian dihaluskan dengan cara penggerusan atau penggilingan.

2. Cara Busur Bredig
Cara ini digunakan untak membuat sol-sol logam.

3. Cara Peptisasi
Cara peptisasi adalah pembuatan koloid dari butir-butir kasar atau dari suatu endapan dengan bantuan suatu zat pemeptisasi (pemecah).
Contoh:
- Agar-agar dipeptisasi oleh air ; karet oleh bensin.
- Endapan NiS dipeptisasi oleh H2S ; endapan Al(OH)3 oleh AlCl3
Hukum Kesetimbangan
Hukum Guldberg dan Wange: Dalam keadaan kesetimbangan pada suhu tetap, maka hasil kali konsentrasi zat-zat hasil reaksi dibagi dengan hasil kali konsentrasi pereaksi yang sisa dimana masing-masing konsentrasi itu dipangkatkan dengan koefisien reaksinya adalah tetap.
Pernyataan tersebut juga dikenal sebagai hukum kesetimbangan.
Untuk reaksi kesetimbangan: a A + b B « c C + d D maka:
Kc = (C)c x (D)d / (A)a x (B)b

Kc adalah konstanta kesetimbangan yang harganya tetap selama suhu tetap.
BEBERAPA HAL YANG HARUS DIPERHATIKAN
- Jika zat-zat terdapat dalam kesetimbangan berbentuk padat dan gas yang dimasukkan dalam, persamaan kesetimbangan hanya zat-zat yang berbentuk gas saja sebab konsentrasi zat padat adalah tetap den nilainya telah terhitung dalam harga Kc itu.
Contoh: C(s) + CO2(g) « 2CO(g)
Kc = (CO)2 / (CO2)


- Jika kesetimbangan antara zat padat dan larutan yang dimasukkan dalam perhitungan Kc hanya konsentrasi zat-zat yang larut saja.
Contoh: Zn(s) + Cu2+(aq) « Zn2+(aq) + Cu(s)
Kc = (Zn2+) / (CO2+)


- Untuk kesetimbangan antara zat-zat dalam larutan jika pelarutnya tergolong salah satu reaktan atau hasil reaksinya maka konsentrasi dari pelarut itu tidak dimasukkan dalam perhitungan Kc.
Contoh: CH3COO-(aq) + H2O(l) « CH3COOH(aq) + OH-(aq)
Kc = (CH3COOH) x (OH-) / (CH3COO-)

Contoh soal:
1. Satu mol AB direaksikan dengan satu mol CD menurut persamaan reaksi:
AB(g) + CD(g) « AD(g) + BC(g)
Setelah kesetimbangan tercapai ternyata 3/4 mol senyawa CD berubah menjadi AD dan BC. Kalau volume ruangan 1 liter, tentukan tetapan kesetimbangan untuk reaksi ini !
Jawab:
Perhatikan reaksi kesetimbangan di atas jika ternyata CD berubah (bereaksi) sebanyak 3/4 mol maka AB yang bereaksi juga 3/4 mol (karena koefsiennya sama).
Dalam keadaan kesetimbangan:
(AD) = (BC) = 3/4 mol/l
(AB) sisa = (CD) sisa = 1 - 3/4 = 1/4 n mol/l
Kc = [(AD) x (BC)]/[(AB) x (CD)] = [(3/4) x (3/4)]/[(1/4) x (1/4)] = 9
2. Jika tetapan kesetimbangan untuk reaksi:
A(g) + 2B(g) « 4C(g)
sama dengan 0.25, maka berapakah besarnya tetapan kesetimbangan bagi reaksi:
2C(g) « 1/2A(g) + B(g)
Jawab:
- Untuk reaksi pertama: K1 = (C)4/[(A) x (B)2] = 0.25
- Untuk reaksi kedua : K2 = [(A)1/2 x (B)]/(C)2
- Hubungan antara K1 dan K2 dapat dinyatakan sebagai:
K1 = 1 / (K2)2 ® K2 = 2
Pengaruh Katalisator Terhadap Kesetimbangan Dan Hubungan Antara Harga Kc Dan Kp
PENGARUH KATALISATOR TERHADAP KESETIMBANGAN
Fungsi katalisator dalam reaksi kesetimbangan adalah mempercepat tercapainya kesetimbangan dan tidak merubah letak kesetimbangan (harga tetapan kesetimbangan Kc tetap), hal ini disebabkan katalisator mempercepat reaksi ke kanan dan ke kiri sama besar.

HUBUNGAN ANTARA HARGA Kc DENGAN Kp

Untuk reaksi umum:

a A(g) + b B(g) « c C(g) + d D(g)

Harga tetapan kesetimbangan:
Kc = [(C)c . (D)d] / [(A)a . (B)b]
Kp = (PCc x PDd) / (PAa x PBb)
dimana: PA, PB, PC dan PD merupakan tekanan parsial masing-masing gas A, B. C dan D.

Secara matematis, hubungan antara Kc dan Kp dapat diturunkan sebagai:
Kp = Kc (RT) Dn
dimana Dn adalah selisih (jumlah koefisien gas kanan) dan (jumlah koefisien gas kiri).
Contoh:
Jika diketahui reaksi kesetimbangan:
CO2(g) + C(s) « 2CO(g)

Pada suhu 300o C, harga Kp= 16. Hitunglah tekanan parsial CO2, jika tekanan total dalaun ruang 5 atm!
Jawab:
Misalkan tekanan parsial gas CO = x atm, maka tekanan parsial gas CO2 = (5 - x) atm.
Kp = (PCO)2 / PCO2 = x2 / (5 - x) = 16 ® x = 4
Jadi tekanan parsial gas CO2 = (5 - 4) = 1 atm

Rabu, 13 April 2011

Upaya penanggulangan kerusakan tanah


Kerusakan tanah dapat dikurangi dan dicegah melalui suatu upaya yang disebut konversi tanah. Konversi tanah adalah pemeliharaan dan perlindungan terhadap tanah secara teratur guna mengurangi dan mencegah kerusakan tanah dengan cara pelestarian.
       
Metode konservasi tanah dilakukan dengan 3 cara, yaitu konservasi secara agronomis, mekanis, dan kimiawi.
a.   Konservasi secara agronomis adalah konservasi dengan memanfaatkan vegetasi (tanaman) dan sisa tanaman untuk mengurangi laju perusakan lapisan tanah paling atas.
b.   Konservasi secara mekanis adalah konservasi tanah yang prinsipnya berupaya mengurangi banyaknya tanah yang hilang akibat erosi. Contohnya adalah pembuatan guludan dan terasering.
c.   Konservasi secara kimiawi adalah konservasi tanah dengan memanfaatkan bahan-bahan kimia. Konservasi kimiawi bertujuan untuk memperbaiki kemantapan struktur tanah.


Upaya Penanggulangan Erosi Tanah
Pada tanah-tanah berlereng, erosi menjadi persoalan yang serius. Dimana kemiringan dan panjang lereng adalah dua unsur lereng yang berpengaruh terhadap aliran permukaan dan erosi. Jika kecepatan aliran meningkat dua kali, maka jumlah butir-butir tanah yang tersangkut menjadi 32 kali lipat, bila panjang lereng menjadi dua kali lipat, maka umumnya erosi yang terjadi akan meningkat 1.5 kali. Pengkajian di Indonesia menunjukkan untuk tanah gundul tingkat erosi mencapai 120-400 ton/ha/th, hal ini tentu saja di bidang jalan akan memberikan dampak turunan seperi kerusakan prasarana dan sarana jalan. Adapun tujuan pengkajian teknologi penanganan erosi di ruang milik jalan ini adalah untuk mengetahui pengaruh kemiringan lereng dan kombinasi metode vegetatif terhadap tingkat erosi pada kemiringan diatas atau dibawah 60 derajat dan Kajian pengembangan teknologi penanganan erosi lereng dengan metode vegetatif (rumput vetiver dan rumput bahia). Untuk mencapai tujuan itu dilakukan pengkajian dan pembuatan prototype skala laboratorium penanganan erosi dengan metode vegetasi (tanaman ), dan pengkajian pengembangan teknologi penanganan erosi lereng dengan tanaman rumput vetiver yang dikombinasikan dengan rumput bahia dan rumput gajah dalam skala lapangan. Hasil pengkajian menunjukkan tingkat erosi akan semakin berkurang dengan meningkatnya tingkat kerimbunan tanaman, dan kerimbunan tanaman penutup> 70% tanah yang tererosi mendekati nol. Teknik Penanaman rumput vetiver agar berfungsi secara optimal di dalam mengurangi tingkat erosi dilereng dilakukan secara berbaris dan diantara baris vetiver ditanamami tanaman penutup rumput bahia.

KONSEP MOL

1 mol adalah satuan bilangan kimia yang jumlah atom-atomnya atau molekul-molekulnya sebesar bilangan Avogadro dan massanya = Mr senyawa itu.

Jika bilangan Avogadro = L maka :

L = 6.023 x 1023
1 mol atom = L buah atom, massanya = Ar atom tersebut.
1 mol molekul = L buah molekul massanya = Mr molekul tersehut.

Massa 1 mol zat disebut sebagai massa molar zat

Contoh:

Berapa molekul yang terdapat dalam 20 gram NaOH ?

Jawab:

Mr NaOH = 23 + 16 + 1 = 40
mol NaOH = massa / Mr = 20 / 40 = 0.5 mol
Banyaknya molekul NaOH = 0.5 L = 0.5 x 6.023 x 1023 = 3.01 x 1023 molekul.

Persamaan Reaksi

PERSAMAAN REAKSI MEMPUNYAI SIFAT

1. Jenis unsur-unsur sebelum dan sesudah reaksi selalu sama
2.
Jumlah masing-masing atom sebelum dan sesudah reaksi selalu sama
3. Perbandingan koefisien reaksi menyatakan perbandingan mol (khusus yang berwujud gas perbandingan koefisien juga menyatakan perbandingan volume asalkan suhu den tekanannya sama)

Contoh: Tentukanlah koefisien reaksi dari

HNO3 (aq) + H2S (g) ®   NO (g) + S (s) + H2O (l)

Cara yang termudah untuk menentukan koefisien reaksinya adalah dengan memisalkan koefisiennya masing-masing a, b, c, d dan e sehingga:

a HNO3 + b H2S ®
   c NO + d S + e H2O
Berdasarkan reaksi di atas maka
atom N : a = c (sebelum dan sesudah reaksi)
atom O : 3a = c + e ®  3a = a + e ®  e = 2a
atom H : a + 2b = 2e = 2(2a) = 4a ®  2b = 3a ®
  b = 3/2 a
atom S : b = d = 3/2 a

Maka agar terselesaikan kita ambil sembarang harga misalnya a = 2 berarti: b = d = 3, dan e = 4 sehingga persamaan reaksinya :

2 HNO3 + 3 H2S ®
  2 NO + 3 S + 4 H2O
Berbagai Tingkat Keanekaragaman Hayati
Keanekaragaman hayati dapat terjadi pada berbagai tingkat kehidupan, mulai dari organisme tingkat rendah sampai organisme tingkat tinggi. Misalnya dari mahluk bersel satu hingga mahluk bersel banyak; dan tingkat organisasi kehidupan individu sampai tingkat interaksi kompleks, misalnya dari spesies sampai ekosistem.
Secara garis besar, keanekaragaman hayati terbagi menjadi tiga tingkat, yaitu :

1. Keanekaragaman gen

Setiap sifat organisme hidup dikendalikan oleh sepasang faktor keturunan (gen), satu dari induk jantan dan lainnya dari induk betina. Keanekaragaman tingkat ini dapat ditunjukkan dengan adanya variasi dalam satu jenis.
misalnya :
- variasi jenis kelapa : kelapa gading, kelapa hijau
- variasi jenis anjing : anjing bulldog, anjing herder, anjing kampung
Yang membuat variasi tadi adalah : Rumus : F = G + L
F = fenotip
G = genoti
L = lingkungan
Jika G berubah karena suatu hal (mutasi dll) atau L berubah maka akan terjadi perubahan di F. Perubahan inilah yang menyebabkan terjadinya variasi tadi.


Gbr. Variasi morfologi dalam satu jenis gandum akibat persilangan
2. Keanekaragaman jenis (spesies)

Keanekaragaman ini lebih mudah diamati daripada Keanekaragaman gen. Keanekaragaman hayati tingkat ini dapat ditunjukkan dengan adanya beraneka macam jenis mahluk hidup baik yang termasuk kelompok hewan, tumbuhan dan mikroba.
misalnya :
- variasi dalam satu famili antara kucing dan harimau. Mereka termasuk dalam satu famili(famili/keluarga Felidae) walaupun ada perbedaan fisik, tingkah laku dan habitat.


3. Keanekaragaman ekosistem

Keanekaragaman tingkat ini dapat ditunjukkan dengan adanya variasi dari ekosistem di biosfir.
misalnya :
ekosistem lumut, ekosistem hutan tropis, ekosistem gurun, masing-masing ekosistem memiliki organisme yang khas untuk ekosistem tersebut. misalnya lagi, ekosistem gurun di dalamnya ada unta, kaktus, dan ekosistem hutan tropis di dalamnya ada harimau.

Ketiga macam keanekaragaman tersebut tidak dapat dipisahkan satu dengan yang lain. Ketiganya dipandang sebagai suatu keseluruhan atau totalitas yaitu sebagai keanekaragaman hayati.